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Relativistic Thomas—Fermi Calculations
Of Finite Nuclei Including Quantum
Corrections

D. Von-Eiff and M.K. Weigel

Abstract

Relativistic Thomas-Fermi calculations for finite nuclei including
quantum corrections up to second order in %; i.e. Wigner-Kirkwood-
and exchange—corrections, have been performed. A linear 0—w model
is used, in case of exchange—corrected calculations extended by m—
nucleon and tensor p—nucleon contributions. A detailed discussion of
the outcome shows that the inclusion of quantum corrections improves
the description of the nuclear surface and the classical forbidden re-
gion in comparison to the standard relativistic Thomas—Fermi model.
Furthermore, special attention is devoted to the investigation of the
spin—orbit interaction and the influence of the c-meson mass on nu-
clear properties.



1 Introduction

In recent years the interest in the investigation of nuclear systems has shifted
strongly towards a relativistic approach (see, for instance, Refs. [1, 2]). The
Walecka model (for a review, see Ref. [1]) and its extension by Boguta and
Bodmer [3], who added nonlinear contributions through cubic and quartic
terms in the scalar field, have been widely and successfully used to describe
the ground-state properties of finite systems within the Hartree approxima-
tion [1, 4, 5]. More elaborated and fundamental models, like Dirac-Hartree-
Fock [6] or Dirac-Brueckner-Hartree-Fock [7, 8], which moreover use more
sophisticated Lagrangians, have also been investigated.

However, most of these applications are quite involved, because the eval-
uation of energies and density distributions demands the knowledge of the
wavefunctions of all occupied single-particle states. This can be circum-
vented by means of semiclassical methods. They allow the study of aver-
age nuclear properties in a systematic and transparent way, while the task
of calculating the wave functions is avoided, which simplifies the numerical
treatment enormously. Within the simplest semiclassical approach, namely
the Thomas—Fermi approximation, the Walecka model has been solved for
finite nuclei by several authors {1, 9-11].

Semiclassical models including higher order corrections have been used
with great success in nonrelativistic nuclear physics (see, for instance, [12,
13]). These models are commonly based on the Wigner-Kirkwood (WK)
h-expansion [14] of the phase-space density, whose lowest order corresponds
to the Thomas-Fermi approximation.

Quite recently, several groups have begun to apply semiclassical methods
including WK-corrections to relativistic problems. Due to the matrix struc-
ture of the relativistic Hamiltonian, the task of performing the A-expansion
of the density matrix is much more involved [15-19]. Using this scheme to de-
scribe nuclear systems whose potential has to be determined selfconsistently,
e.g. within the (non-)linear o—w model, one faces two crucial problems:
firstly, the particle- and energy densities including WK-corrections up to
second order in % are complicated functionals of the meson-fields, their first
and second derivatives and the Fermi momenta. To our knowledge, the prob-
lem of a selfconsistent WK—-approach has not yet been solved in the nuclear
context. The second problem is the well known fact that the WK-corrections
in coordinate space diverge at the classical turning point. Krivine et.al. [20]
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pointed out that these are distributions rather than functions in the mathe-
matical sense and can only be used for the computation of expectation values
of one body operators but not for the determination of r-space densities of
any kind to improve shapes predicted by Thomas-Fermi calculations.

Both of these problems can be overcome by the density functional formal-
ism, in which the scalar- and time-like potentials and their derivatives are
eliminated in favour of the corresponding densities and their derivatives. The
basic theorem of Hohenberg and Kohn was extended to Quantum Hadrody-
namics (QHD) for the Walecka Lagrangian by Speicher, Dreizler and Engel
[19], thus providing the theoretical foundation of the approach. Numerical
investigations within nonlinear o—w models were carried out by Centelles
et.al. [21, 22].

However, the density functional approach is not equivalent to the WK-
approach, because they originate from different arrangements of the %-—
expansion of the energy functional. This is illustrated in Ref. [22] for the
case of a given external potential, namely a relativistic harmonic oscillator:
while it can be numerically shown that the WK-results up to second order
in h are equivalent to those obtained by the Strutinsky averaging method,
which uses single—particle occupation numbers smoothed by some averaging
function to seperate the smooth part of the energy from the fluctuating shell
corrections [23], the density functional approach yields different results. It
has been shown in the nonrelativistic case that these discrepancies increase
within selfconsistent calculations [24]. Hence, the rearrangement of the A-
expansion causes some “loss of information”, which in turn results in a not
so proper estimation of the smooth part of the energy by the density func-
tional approach. The specific nature of this “loss of information” is one of
the questions that we address in this paper.

Like the WK-corrections, exchange—(Fock-)terms are quantal corrections
of the order %% [17]. Hence, dealing with quantum corrections up to the
second order, both kinds of corrections have to be taken into account. Fur-
thermore, exchange—corrections allow the study of m—meson and tensor p-
nucleon contributions to nuclear properties. A semiclassical treatment of
such more realistic Lagrangians as used in relativistic Hartree-Fock (RHF) or
Brueckner-Hartree-Fock (RBHF') calculations seems to be a meaningful task,
since even the RBHF-approach can be parametrized in a RHF-structure by
means of density dependent coupling constants [25, 26].

For all these reasons, we considered it worthwhile to perform semiclassical

.



calculations of finite nuclei including both quantum corrections up to second
order in k. They are taken into account in a kind of perturbative treatment
as outlined in section 3. Their impact on average nuclear properties is studied
in a systematic way; special attention is devoted to the strength of the spin-
orbit interaction, the description of the nuclear surface and the influence of
the c—-meson mass on nuclear properties.

The paper is organized as follows. In section 2 the expressions of the
relativistic Thomas—Fermi approximation (RTFA) within a Walecka model
are recalled. The way we incorporated the WK- and exchange—corrections
in our calculations is described in section 3. Section 4 contains the results
and their discussion. Our conclusions are drawn in section 5. To complete
the paper, we give in the Appendix the explicit expressions for the second
order WK-corrections to the various densities.

2 Relativistic Thomas—Fermi Approxima-
tion (RTFA)

For the sake of completeness we recall briefly the expressions of the relativistic
Thomas-Fermi description of finite nuclei within a Walecka model [1]. The
dynamics of the nuclear system are governed by the following Lagrangian, in-
cluding the electromagnetic field and p-meson contributions to take proton-
neutron asymmetry effects into account (we use the units A =c = 1):

L= ,C?V + E [['(IJW + »CMN] (2.1)
M=0,w,0,A
with the free nucleon— and meson-Lagrangians

(@) = $() (nd* — M), (22)
@) = 3 (Bup(@)de(e) — m2e(2) (2.3
L) = gmiu(e)et(e)— 7 Ful(e)F*(2), (2.4)
D) = 3mia(2)e*(z) - 10 (=)0 () (25)
and the free contribution of the electromagnetic field
£3(2) = ~3 A ()4 (2), (2.6)
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where the field tensors are given in the usual way:
Fu(z) = 0w (z) — dwu(z),
Apn(z) = 0,A(z) - 0, Au(z),
, Gu(z) = 0,0.(z) — 0, 0,(x). )
The interaction terms Lyn(z) are given by:

Lon(z) = goP(z)p(2)(),

Lon(@) = —ab(En o)),
EQN(Q:) = —gezﬁ(x)'y“?-@‘,,(z)z/)(x),
Lan(e) = —ebley* 22 AL @)0(a)

(2.7)
(2.8)
(2.9)

(2.10)
(2.11)
(2.12)

(2.13)

The Thomas-Fermi expression for the energy density can be derived in a
standard way from the Lagrangian. Expanding the nucleon field operators
locally into plane waves, while the meson- and electromagnetic field operators
are replaced by their ground-state expectation values, one gets in the static

case:

(Fer)” +m2e(r)] -

(Vo) + ()]

(9 200(r)” + m2ao(r)] -

- % (V40(m)" +

4+ guwo(r)pB(r) + gooo(r)pa(r) + eAo(r)pp(r) +

GTF(T‘) = i

|
N = Nl = o =

872

with the effective mass

i=p,n

M*(T) = M - go‘P(T),
the densities
1 .
pi(r) = 3.7 P (r), i =p,n,
pe(r) = pp(r) + pu(r),
p3(r) = pp(r) — pu(r)

6

(2.14)

Y 5 [PF(")E%(T) + P (P)er(r) — M*(r) 1n PECLEER()

M*(r)

(2.15)

(2.16)

(2.17)
(2.18)



and

er(r) = \/o&(r) + M**(r), i=p,n. (2.19)

i = p,n denotes the charge state of each nucleon. The assumption of spherical

symmetry leaves the time-like components of the vector meson fields, while

only the uncharged component of the g-meson contributes due to charge

conservation. We neglect any contribution of antinucleons. In the following

the indices of the w—, p— and electromagnetic field are dropped for simplicity.
The variational principle applied to equation (2.14) yields:

(A=mi)e(r) = —gops(r), (2:20)
(A-m2)w(r) = —guea(r), (2.21)
(A —m2)o(r) = —gopa(r), (2.22)
AA(r) = —epp(r), (2.23)

pp = guw(r) + goo(r) + eA(r) + €r,(r), (2:24)
pn = guw(r) — goo(r) + €r,(r) (2.25)

with the scalar densities

PF (T)

) = —2 3 M*(r) i=op.n
PS;( ) (271_)3 b/ d’p \/p2 + M*g(r)’ y XD (226)
ps(r) = ps,(r) + ps,(r). (2:27)

Equations (2.20) to (2.27) constitute a nonlinear system for the nuclear den-
sities, meson—- and electromagnetic fields in RTFA, which has to be solved
selfconsistently. At each iteration step the chemical potentials can be ad-
justed to the right number of protons and neutrons, Z and N, respectively,

by
Z fori=
/ d3rp,~(r)={ N i (2.28)
14

For the kinetic energy density one obtains in RTFA the following expres-
sion [16]:



rre) = ¥ {ha{amer1ebo) - M20) (5 - sy ) melrlerte)e

i=p,n

+ M™(r) (3 —4 n PE(D) £ 5F(")] - M ng)}. . (229)

M]ym) M-(r) E2

3 Quantum Corrections

In the general Hartree-Fock scheme the oc—-meson gives the following contri-
bution to the selfenergy in the phase-space representation:

So(fp) = g2 [ &' o) (7= ) ps(7)+ (3.1)
%4

diq 1
(27)* (p—q)? —mZ + 17

The expressions for the other mesons have a similar structure [17].
(%) (7 — ') represents the static meson propagator (Yukawa potential), while
G(7,q) is the Wignertransform of Green’s function, which obeys the corre-
sponding Dyson equation. The Wignertransforms of the selfenergy and the
Dyson equation constitute the relativistic Hartree-Fock approximation in
phase-space, which is difficult to solve. For that reason we try an approxi-
mate solution by utilizing a A-expansion. In the next section we discuss the
Wigner-Kirkwood corrections, while section 3.2 deals with the Fock terms.

+ ig? G (7,q) = ZZ(F) + B (7, p).

3.1 Wigner—Kirkwood Corrections

In Ref. [16] we derived the WK-corrections to the relativistic phase-space
densities and densities up to second order in %. The explicit expressions for
the second order terms of the particle-, scalar—, energy— and kinetic energy
densities of each kind of nucleons feeling the action of a scalar— and a time-like
potential, ¥ 5 and ¥, respectively, are given in Appendix A.

Equations (2.16), (2.26), (2.14) and (2.29) represent the corresponding
zeroth order expressions of the h—expansion of Ref. [16], with the energy
density err depending on the definition of the interaction.
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With the dynamics of the system specified by the Lagrangian (2.1), the
scalar— and time-like parts of the nucleon selfenergy are given in each order

by

Bs(r) = go(r), (3.1.1)
To,(r) = guw(r) + go0(r) + eA(r), (3.1.2)
Doa(r) = guw(r) — go0(r) (3-1.3)

and the general expressions (A.5) and (A.6) are equivalent and equal to
equations (2.24), (2.25) and (2.15), respectively. The h—corrections to the
meson— and electromagnetic fields are formally determined in each order by
a set of equations analogue to the Thomas-Fermi equations (2.20) - (2.23)
[17]. For the second order they are explicitly given in Appendix A.

Equations (2.14), (A.3) and (2.16), (A.1) constitute expressions up to
second order in A for the energy- and particle density, respectively:

e = eTF+ Z CFVK, | (314)
i=p,n
1 .
pi = gw—gpi*.- + pl'%, 1=p,n. (3-1.5)

At this point we remind the reader of the two crucial problems we mentioned
in the Introduction, nameley the complicated functional dependence of ex-
pressions (3.1.4) and (3.1.5) on the meson- and the electromagnetic fields,
their first and second derivatives and the Fermi momenta, and secondly the
divergences of the WK-corrections (A.1) to (A.4) at the classical turning
point.

As also mentioned in the Introduction both of the problems can be over-
come by the density functional formalism [19, 21, 22] which, on the other
hand, “loses information” with respect to the WK-approach. To study the
impact of the “original” WK-corrections, while the simplicity and systematic
structure of the semiclassical approach are retained, a kind of perturbative
treatment seems necessary.

For this purpose we rewrite equation (2.28) as:

Br o) = | Br | ——n3.( WK = TF WK P
V/drp,(r)_vfdr [37r2pp,.(r)+p, (r)] {N=NTF+NWK fori=n

(3.1.6)



which takes terms of the order #? into account. To consider the WK-
corrections within our numerical iteration scheme we proceeded as follows:
after a Thomas—Fermi run of our code (see section 2) we used its outcome
to calculate the WK-corrections to the nucleon densities given by equation
(A.1). Remembering the fact that only WK-corrections to expectation val-
ues of one body operators make sense, we integrate those expressions and
obtain Zwg and Nwg of (3.1.6). Before starting the next Thomas-Fermi
iteration step, the chemical potentials have to be adjusted to the right par-
ticle numbers. But now, instead of adjusting them to Z and N as it is
done within pure Thomas-Fermi calculations, we use Z7p = Z — Zwg and
Nzg = N — Nyg, respectively. This procedure is repeated until convergence
is reached. In the final step of calculating the total energy, we include the
WZK-corrections to the energy density and to the meson— and electromagnetic
fields, as determined by equations (A.3) and (A.8) — (A.11), respectively.
This iteration scheme provides a perturbative consideration of the WK-
corrections to the particle numbers, while their given values Z and N are
retained; i.e. comparisons with pure Thomas—-Fermi calculations make sense,
because one is really looking at the same nucleus. The perturbative character
of the approach ensures that the consideration of the WK-corrections is
restricted to order A%; i.e. only zeroth order quantities are used to calculate
Zwk and Nyg. In the following, we refer to this approximation scheme as

RTFA-WK.

3.2 Exchange Corrections

Exchange terms are typical quantum corrections. This can be seen by looking
at equation (3.1) in a system of units with % # 1: the Fock terms are at
least of the order A2 and hence of the same order as the WK-corrections of
equations (A.1) to (A.4) [17]. Therefore, dealing with quantum corrections up
to the second order, both kinds of corrections have to be taken into account.

Another motivation to include exchange corrections is the following: as is
well known, in the original Walecka— (Hartree-) model, the incompressibil-
ity K of nuclear matter is considerably too large, while the nuclear matter
effective mass M™, which, for fixed saturation density and binding energy
determines completely the energy dependence of the optical potential, is too
small. A widely and successfully used (see, for instance, Refs. [4, 5, 9, 21, 22])
approach to overcome these shortcomings was firstly proposed by Boguta and

10



Bodmer [3], who introduced two additional free parameters through cubic and
quartic terms in the scalar field, which shift K and M™ to more reasonable
values compared with the experiment.

On the other hand, nuclear matter calculations within the Hartree- Fock
scheme showed [6, 27] that to some extend these improvements can also
be reached by inclusion of the m—meson and an additional tensor coupling
term to the p-nucleon interaction, but without “paying” for it by additional
adjustable parameters.

Therefore and due to the arguments given in the Introduction in favour
of more sophisticated many—body dynamics, we extend the Lagrangian to
the standard Hartree-Fock form (see, for instance, Refs. [6, 17, 27, 28, 30]):

Lo=Ly+ LY+ Lan + LI (3.2.1)

L, denotes the original Lagrangian (2.1), while the free 7—meson contribution
is given by

£o(z) =+ (847 (z) - 0*7(z) — m? #(z) - 7(z)) . (3.2.2)
2

For the 7-nucleon interaction we use the pseudovector form [6]:

Lon(@) = = L2 B (@)ver (647 - #(2)) (a), (323)
while the tensor part of the gp-nucleon coupling can be written as:
L (z) = ——%zﬁ(m)a‘“’%‘- C—fw(x)zﬁ(x) (3.2.4)
with )
o = = [, 7] (3.2.5)

The tensor part of the w-nucleon interaction is negligible [6].

The full selfconsistent treatment of the exchange corrections up to sec-
ond order in % is a rather complicated task [17]. However, it has been shown
in Ref. [28, 29] that within Hartree-Fock calculations for nuclear matter
there are only small deviations when the Fock terms are determined per-
turbatively with the selfconsistently calculated Hartree results as an input,
compared to the fully selfconsistent procedure. It is also known from nuclear
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matter Hartree—Fock calculations that ££ and ¥, the scalar- and time-like
components of the exchange part of the nucleon selfenergy, respectively, are
reasonably independent of momentum and that the corresponding vector-like
component X{ is a small correction (< 5%) to the total nucleon selfenergy
for the densities of interest in the present study (see, for instance, {6, 30}]).

For these reasons we proceeded as follows: after a Thomas-Fermi itera-
tion we used the resulting Fermi momenta and effective mass to calculate
E (r,p) and Tf (r,p); i.e. the scalar- and time-like components of the ex-
change corrections within a local density approzimation (LDA). To adjust
the chemical potentials to the right particle numbers by (2.28), we rewrite
equations (2.24) and (2.25) as:

pp = guw(r) + goo(r) + eA(r) + g, (r) +

+\/p%,,(r) + (M*(r) - 2§, (r))2 : (3.2.6)
pn = guto(r) = goo(r) + Zg, (r) +
+ER )+ (M) - 35, (") (3.2.7)

i.e. we treat the scalar— and time-like exchange terms, which are calculated
within a LDA, like Thomas~Fermi contributions to the nucleon selfenergy.
As it is done in Ref. [30], we take the Fock contributions at the correspond-
ing Fermi momentum. Then the next Thomas-Fermi iteration starts until
convergence is reached.

This iteration scheme considers the exchange corrections in a simple way,
which allows a systematic study of their impact on the ground-state prop-
erties of a given nucleus with mass number A=Z+N. In the final step of
calculating the total energy, the small corrections of £¥ are also taken into
account, calculated with the final Thomas—Fermi outcome in a pure pertur-
bative manner.

Since the explicit expressions for ©£, I and Xf are rather lenghty and
given in several publications concerning nuclear matter calculations (see, for
instance, Refs. [1, 28, 31]), we will not repeat them and refer in this respect
to the literature.

We denote the approach including the exchange corrections RTFA-EX,
while the approximation scheme considering both quantum corrections up
to the order #*, WK—corrections of section 3.1 and exchange corrections, is

refered to as RTFA-QC.
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4 Results And Discussion

In this section we present the results obtained within the different approxi-
mations described in sections 2 and 3. For the pure Thomas-Fermi (RTFA)
calculations we used the set of parameters H1 [27], displayed in Table 1. The
same parameters are used for RTFA-WK calculations. For the models with
exchange corrections we have chosen the sets HF1 [27] and HF2 [32], which
are also given in Table 1. The meson masses are fixed to their physical values
m,, = 783 MeV, m, = 770 MeV and m, = 138 MeV, while the bare nucleon
mass is taken as M = 939 MeV. In order not to use too many free parame-
ters, the p~nucleon and, in the cases of HF1 and HF2, the tensor g—nucleon
and m-nucleon coupling constants were also fixed to their physical values,
namely g2/4n = 0.55, f,/g, = 6.6 and f2/4w = 0.08, known from scattering
data [6]. The mass of the o—meson is supposed to represent the exchange of
a two m—resonance and should lie between 400 and 600 MeV. Within Hartree
calculations for nuclear matter m, is not an adjustable parameter, because
only the ratios of coupling constants to the corresponding meson-masses en-
ter the expressions, but by inclusion of Fock terms, the meson-masses and
hence m, occur seperatly.

Therefore, in the case of H1 there are only two adjustable parameters,
the o— and w-nucleon coupling constants. Inclusion of exchange corrections
(HF1 and HF2) adds the o-meson mass as free parameter. g, and g, are
chosen to reproduce the empirical saturation point of nuclear matter, E/A =
-15.75 MeV and p% = 1.30 fm™! (p° = 0.1484 fm~3). In HF1 we retain the
value for m, from the Hl set (where it has no impact on the nuclear matter
results). In HF2 m, is adjusted to get the experimental charge r.m.s. radius
for 10 within our RTFA-QC approach and turns out to be m, = 497 MeV.

As already mentioned earlier, pure Walecka- (Hartree-) calculations (H1)
yield a nuclear matter incompressibility K, which is much too large, while, in
view of the energy dependence of the optical potential, the effective mass M*
is too small. As shown in Table 1, the consideration of exchange terms shifts
K and M* to not yet perfect but more reasonable values compared with the
experimental data. The adjustment of m, in HF2 affects the nuclear matter
properties only slightly (the variation of K is smaller than 2.5%) but has
significant influence on the results for finite systems, as we will see later.
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4.1 Energies And Charge Radii

Before discussing the results for the energies and charge r.m.s radii within the
different approaches presented in this paper, two remarks have to be made.

Firstly, to obtain expectation values of one body operators, like the par-
ticle numbers Z, N or the total and the kinetic energy E and T};, within the
approximations including WK-corrections (RTFA-WK, RTFA-QC), one has
to evaluate the volume integrals of expressions (A.1), (A.3) and (A.4), respec-
tively. As already mentioned in section 1, these expressions are distributions
in the mathematical sense with divergences at the classical turning point.
Due to this fact, it is not possible to determine r-space densities including
WK-—corrections to improve corresponding Thomas—Fermi predictions. This
is a fundamental theoretical restriction of the approaches RTFA-WK and
RTFA-QC. On the other hand the treatment of the divergences while evalu-
ating volume integrals of WK-corrections is a purely technical and numerical
problem. In the case of a given external potential, Krivine et.al. [20] showed
a way to calculate these integrals analytically. This is not possible for a self-
consistently determined potential and thus a numerical “solution” becomes
necessary. Performimg volume integrals of WK~corrections, we used a cutoff
at the classical turning point. A possible measure for the quality of this pro-
cedure is the reproduction of the particle numbers by equation (3.1.6). The
maximum relative error we found is ~ 0.6% for the neutron number N of
16Q within the RTFA-QC approach. In all the other cases the relative errors
for the particle numbers are smaller, for larger nuclei roughly by an order of
magnitude. Hence, the results including WK-corrections can be considered
as sufficiently reliable from the numerical point of view.

The second remark concerns center-of-mass corrections to the total en-
ergy, Ecm.. It was explicitly shown for the nonrelativistic case in Ref. [33]
that on a Thomas—Fermi level center-of-mass corrections to the total energy
are absent. The inclusion of WK-corrections causes center-of-mass correc-
tions. If one treats them in the standard manner, they are overestimated by
~ 30 —40% for light and by a factor of ~ 2 — 3 for heavy nuclei [33]. Due to
this reason we have neglected them in this study.

We turn now to the discussion of the total energies and charge r.m.s. radii
calculated within the different approximations described in sections 2 and 3.
For the characteristic set of spherical nuclei 60, #°Ca, %°Zr and 2®Pb the
results are displayed in Table 2 along with the experimental values [6, 34-36].
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RTFA-EX1, RTFA-QC1 and RTFA-EX2, RTFA-QC2 denote calculations
with the set of parameters HF1 and HF2 of Table 1, respectively.

For all nuclei under consideration, the inclusion of WK-corrections
(RTFA-WK) yields considerably stronger bound systems compared with
the pure Thomas-Fermi calculations (RTFA). It is the nature of WK-
corrections containing first and second derivatives of the potentials, to im-
prove a Thomas-Fermi approach in the surface region, where the RTFA-
assumption of locally constant meson fields becomes less and less valid. Thus
the surface energy is a reasonable candidate when looking for the reason for
the stronger binding within the RTFA-WK approach. A proper calculation
of the surface energy demands the investigation of a semi-infinite system. In
the present paper we restrict ourselves to a simple estimate. For this purpose
we write the semiempirical mass formula as:

L v tasat. (4.1.1)
A
The volume energy coefficient ay is given by the energy per nucleon of satu-
rated nuclear matter, namely ay = 15.75 MeV (see Table 1). as denotes the
surface energy coefficient. We neglect the A~3—term in the energy expansion
(4.1.1), which is about one order of magnitude smaller than the surface en-
ergy. The functional form of the coefficients of the energy expansion up to
the order A~% follows the droplet model theory of Myers and Swiatecki [37].
Coulomb- and asymmetry energy terms are also omitted in equation (4.1.1)
and therefore we recalculated the symmetric systems 0 and “°Ca with the
electromagnetic field switched off. Inserting the resulting energies into the
Lh.s. of expression (4.1.1) we obtained a decrease of the surface energy coef-
ficient from ags ~ 24.5 MeV within RTFA calculations to ag ~ 19.5 MeV for
the RTFA-WK approach, while the experimental value of ag for symmetric
systems is around ~ 20 MeV. Though this procedure gives only a rough
estimate of ag, it allows a qualitative understanding of the stronger binding
by inclusion of the WK-corrections due to a more realistic description of the
surface energy.

Comparing RTFA calculations with the RTFA-EX1 approach, where ex-
change corrections are taken into account, a similar behaviour, namely a
stronger binding for all nuclei under consideration, can be observed. Ap-
plying the same procedure as described above, we find a decrease of the
surface ‘energy coefficient from as ~ 24.5 MeV for the RTFA approach to
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as ~ 21 MeV within RTFA-EX1 calculations. This can be understood in
terms of the nuclear matter incompressibility K: inclusion of exchange cor-
rections along with 7—meson and tensor p—nucleon contributions while the
o-meson mass m, remains fixed, causes a significant lower and more realistic
value for K (see H1 and HF1 in Table 1). A lower incompressibility results
in a smaller surface energy which in turn gives a stronger bound system.

Finally the RTFA-QC1 approach considers WK- and exchange-
corrections. Now both effects, the smaller nuclear matter incompressibility
and the improvement of the surface description by consideration of the spa-
tial dependence of the meson fields, operate together resulting in a further
decrease of the surface energy and stronger bindings compared to the RTFA-
WK and RTFA-EX1 approaches, where WK~ and exchange corrections have
been considered separately, respectively.

Compared to the experimental values, pure Thomas-Fermi calculations
(RTFA) give an underbinding for all nuclei under consideration. Due to
the better description of the surface energy, inclusion of WK- or exchange
corrections shifts the total energies E to more reasonable values (RTFA-WK,
RTFA-EX1). Except for the case of *0, the RTFA-QC1 approach, which
considers both quantum corrections, overestimates the binding compared to
the experiment. This might be connected with the perturbative character of
the approximations as described in section 3. Further improvement may be
achieved by the consideration of h—corrections of higher order.

Looking at the charge r.m.s. radii r, one realizes that the inclusion of
WXK-~corrections hardly affects their values (unsystematic variations of less
than 0.5%) compared with pure Thomas-Fermi calculations. The situation
is different, when exchange corrections are taken into account. Comparing
the charge r.m.s. radii calculated within the RTFA-EX1 approach with the
RTFA results, they are systematically smaller by about 1 ~ 2 %, consistend
with the larger binding energies provided by the inclusion of exchange correc-
tions. A corresponding trend can be observed for the analogue “transition”
from the RTFA-WK to the RTFA-QC1 approach, which also differ through
the consideration of exchange corrections in the latter one. Compared to
the experiments [34-36], all the values for r. within the exchange corrected
approaches RTFA-EX1 and RTFA-QC1 are too small.

As already mentioned earlier; the inclusion of Fock-terms into nuclear
matter calculations introduces the c—meson mass m, as a third adjustable
parameter. We now want to study its impact on the properties of finite
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systems in a systematic way. In the set of parameters HF2 of Table 1, m,, is
adjusted to get the experimental charge radius for 20 within our RTFA-QC
approach. The resulting decrease to m, = 497 MeV is not a surprise: the o—
meson contribution represents almost the entire attractive part of the nuclear
potential, whose range is therefore determined by m,. Thus for a larger r., a
smaller m, is necessary. As a consequence, for all nuclei under consideration
the values for r. increase within RTFA-EX2 and RTFA-QC2 calculations
compared with the RTFA-EX1 and the RTFA-QCI1 results, respectively,
giving a better agreement with the experiments. In addition, the impact
of m, weakens with increasing mass number A: for '®0 the variations of r,
between HF1- and HF2-calculations are about ~ 3.5 %, while for 2®Pb those
differences go down to ~ 0.04 %. This is consistent with the fact that with
increasing A the nuclear matter-like bulk region becomes more and more
dominant and as we mentioned earlier, the impact of m, on nuclear matter
properties is small (see Table 1).

Concerning the binding energies, the systems with larger r., calculated
with the HF2-set, are less bound than the HFl-nuclei with their smaller
charge r.m.s. radii. Estimating the surface energy coefficient as described
above, the decrease of m, from 550 MeV to 497 MeV goes along with an
increase of ag by roughly 4 ~ 5 MeV, which fixes it at about the same value
as within pure RTFA calculations. Furthermore the nuclear matter incom-
pressibility rises slightly by 2.3 % for the smaller m, (see Table 1). Thus,
for the energy, the effects obtained by the inclusion of exchange corrections
in comparison with RTFA are counteracted when m, is lowered. As for the
charge r.m.s. radii, the same trend of a weakening influence of m, with in-
creasing mass number A can be observed for the energies. The impact of m,
. on density distributions will be discussed in the following section.

To ascertain the importance of the WK-—corrections to the energies, it
is useful to look at the different contributions in some detail. In Table
3 we display the WK-corrections to the kinetic- (T}.X/A) and potential
(Egv X | A) energies per nucleon along with the remaining contributions Tin/A
and E,,/A within the approaches RTFA-WK and RTFA-QCI for all nu-
clei under consideration. TWX represents the volume integral of expression
(A.4), while E}7K is the difference of the volume integral of equation (A.3)
and TYVK. We present the energies per nucleon to study their dependence
on-the-mass number-A: As one expects, the WK-corrections decrease with
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increasing particle number. The values for T{hX /A and EZZtK /A for 2%Pb are
40 ~ 60 % smaller than the corresponding ones for 60, due to the greater
influence of the surface region in the latter case. A similar, though somewhat
smaller trend can be observed for the WK~contributions within the RTFA-
WK approach compared to those of RTFA-QC1 calculations: the values in
the latter case are significantly smaller, because, as described above, the ad-
ditionally considered exchange corrections (included in T;,/A and E,./A)
“help” the WK-corrections to improve the description of the surface. Finally,
in all the cases the WK—corrections mainly “correct” the kinetic energies;
their impact on the potential energies is clearly smaller.

The way the total energy is distributed among the various contributions
is displayed in Tables 4 and 5 for all nuclei and all approaches under con-
sideration. The upper index “ez” denotes exchange contributions, Tk, is,
as in Table 3, the total kinetic energy without WK-corrections, while the
total WK-corrections are included in EYX, In all cases, the dominant con-
tributions are the Thomas-Fermi terms of the - and w-meson, F, and E_,
respectively. The corresponding pg-meson contribution, E,, is negligible for
symmetric nuclei, but has to be considered for 2%Pb.

While the nuclear saturation mechanism is almost entirely based on the
remarkably balanced cancellation between E, and E_ within the RTFA and
RTFA-WK approaches, the situation is modified by the inclusion of exchange
corrections. There is a contribution to the attractive part of the nuclear po-
tential by the w-exchange correction, E*, of ~ 10 %, while the terms E¢*,
EZ* and EZT are repulsive, “supporting” E,. The m—meson, which appears
only within the exchange corrected approaches, contributes 9 ~ 10 % to the
repulsive part of the nuclear potential, while the p—meson exchange correc-
tions, E;7, are not negligible, independent on the proton—neutron asymmetry
of the system. The total sum of each column adds up to the corresponding
total energy in Table 2.
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4.2 Densities And Spin—Orbit Interaction

We now turn to the discussion of various nuclear densities. In the previous
sections we have characterized the WK-corrections as distributions in the
mathematical sense. Therefore, plots of r-space densities within the RTFA-
WK and RTFA-QC approaches display divergences at the classical turning
point. However, we have the interesting possibility to study the impact of
exchange corrections by comparing RTFA- with RTFA-EX calculations. We
may obtain by this comparison essential hints about the role of exchange
corrections in a simple manner. One further goal is to study the role of m,.

In Figs.1-4 we present the calculated charge density distributions p. for
all nuclei under consideration within the RTFA- and RTFA-EX1 approxi-
mations along with 3-parameter Fermi fits to the experimental data from
Refs. [34-36]. The charge densities are calculated from the proton densities

pp (2.16) by:

pe(r) = /d3r’(rol7)3 exp (— ((7:‘:0,'."))2) po(r") (4.2.1)

with rg = \/5_/3 (rp)r.m.s. and the charge r.m.s. radius of the proton taken as
(rp)r.m.s. = 0.8 fm [6]. Compared to the experiments, the calculated RTFA-
densities are systematically too small in the bulk. Furthermore, the exper-
imental surface behaviour (steepness) is not reproduced. Additionally, as
expected, the quantal tails cannot be described correctly in a Thomas-Fermi
treatment. -

By inclusion of exchange corrections through the RTFA-EX1 approach,
the bulk value of the charge density increases considerably in all cases; for
208P)b it is in good agreement with the experiment. This corresponds to the
higher binding energies for RTFA-EX1 nuclei, as discussed in the previous
section (see Table 2). Furthermore, the smaller sizes provided by RTFA-
EX1 calculations compared to RTFA are reflected in the density shapes: for
160 inclusion of exchange terms reduces . by 1.1%. This relative reduction
increases with A and is twice as large for ?®Pb (see Table 2). This A~
dependent effect is clearly visible comparing the long-dashed and dot-dashed
lines of Figs.1-4. Because the exchange terms are treated like Thomas—Fermi
contributions to the nuclear potential; i.e. they are averaged in the same way
(see section 3.2}, one cannot expect any improvement in the quantal tails and,
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of course, no shell-effects are obtainable in both treatments.

As mentioned in the previous section, changes in m, influence mainly
small systems, while their impact is weakened for large, nuclear matter like
nuclei. To study the m,—dependence of particle densities, we therefore look
at the baryon densities pp (see equation (2.17)) of the small systems 'O and
40Ca. This is done in Figs.5 and 6, where we have plotted the RTFA-, RTFA-
EX1- and RTFA-EX2 results. As for the charge densities of Figs.1-4, the
bulk values of pp are higher within the RTFA-EX1 approximation compared
to RTFA. The counteracting effect of a decreasing m, we discussed in the
previous section and which leads to weaker bindings in RTFA-EX2 compared
to RTFA-EX1 (see Table 2), yields in turn reduced corresponding bulk values
of pp. The diffuseness of the RTFA-EX2 densities are larger than the RTFA-
EX1 ones. We observed similar trends for the charge densities, indicating that
the higher values for the charge r.m.s. radii in RTFA-EX2 (see Table 2), are
obtained by the longer tails of the charge densities rather than by an actual
increase of the systems sizes. Confirming our previous statement concerning
the dependence of the impact of m, on the mass number A, the differences
between the RTFA-EX1- and RTFA-EX2 baryon densities are smaller for
40Ca than for 0. We found that for ®°Zr and ?%Pb this trend continues.

We now turn to the discussion of kinetic energy densities. In Fig.7 we
present the proton kinetic energy densities 7, for our set of spherical nuclei
within the RTFA (solid lines), RTFA-EX1 (long~dashed) and RTFA-EX2
(dot—dashed) approximations. As for the charge- and baryon densities of
Figs.1-6, the values in the bulk are considerably higher when exchange terms
are included. Comparing the RTFA-EX1 with the RTFA-EX2 results, the
impact of m, in the bulk region is not as systematic as discussed above.
However, similar to Figs.5 and 6, a more diffuse fall-off can be observed
for the RTFA-EX2 interaction compared to RTFA-EX1. The peaks in the
surface regions, even for the small nuclei where no central depression caused
by the electromagnetic field occurs, reflect the dependence of the kinetic
energy density on the effective mass (see equation (2.29) for RTFA), which
approaches the bare nucleon mass at large radial distances.

At all radial distances 7, is positive. This is what one expects for the
semiclassical RTFA-model as well as for the RTFA-EX approaches, where
exchange terms are treated like Thomas-Fermi contributions to the nuclear
potential (see section 3.2). These approximations are principally not able to
describe the physics of the classically forbidden region, where the quantal
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tails of the particles’ wave functions have negative kinetic energies, resulting
in a negative kinetic energy density in the outer surface region. However,
improvement of this deficiency of standard Thomas—Fermi methods is one of
the reasons for the consideration of WK-corrections. Hence, we plotted in
Fig.8 the Thomas-Fermi contribution 77 ¥ (see equation (2.29)) and the total
proton kinetic energy density 7, = 77 F 47V of 2%8Pb within our RTFA-WK
approach ("X is given by equation (A.4)). Of course, this is “illegitimate”
in view of the WK—corrections being distributions in the mathematical sense
(see section 3.1), and the question concerning the physical nature of such a
plot, and especially of the divergences, finally remains open to us (in this
context see also Ref. [38]). However, considering the fact that the volume
integral of 7, is a reasonable physical quantity, it might be of interest that,
while ‘rg F stays positive at all radial distances as expected, the inclusion of
WXK-corrections yields a negative kinetic energy density in the surface region
before it diverges at the classical turning point. Refering to the vague “loss
of information” along with the reordering of the h-expansion when going
from the WK-approach to the density functional formalism (see section 1),
this negative kinetic energy density might be a candidate: looking at Fig.5
of Ref. [21], the density functional formalism seems not to be able to provide
negative values for 7, at large radial distances (in a recent paper, Swiatecki
[39] studied an improved nonrelativistic Thomas-Fermi method, in which
the standard expression for the kinetic energy density is modified so that it
becomes negative in the outer surface region).

Finally we turn to the discussion of the spin-orbit interaction. It is auto-
matically included in the single-particle Dirac equation and can be identified
by means of a Foldy—Wouthuysen reduction. For a nucleon feeling the action
of a scalar— and a time-like potential, ¥s and Xy, respectively, one obtains
an effective single-particle spin-orbit interaction of the form [1, 40]:

1 (dZo(r) + d¥s(r)

Veolr) = dr dr

) S-L=-a(r)S-L. (4.2.2)

We calculated the quantity « for a proton in all nuclei under consideration.
Within the RTFA approximation, X and Xg are given by equations (3.1.1)
and (3.1.2), respectively. For RTFA-EX calculations we used in accordance
with equation (3.2.6):

Zs(r) = goo(r) + Egp (r),  (4.23)
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Lo(r) = guw(r) +ge0(r) + eA(r) + 5, (), (424)

with the Fock contributions evaluated at the corresponding Fermi momen-
tum. The results are presented in Fig.9. While £5 and ¥, are adding up
in the spin-orbit interaction of equation (4.2.2), we know that they tend to
cancel in the binding energy. Therefore we also plotted the differences of the
scalar— and time-like components of the RTFA-proton-selfenergies, X5 — Xy,
in Fig.9. These differences become negative for large radial distances because
of the long-range Coulomb field, which is included in X.

The interesting parts are the peaks of a in the surface regions. It can be
observed that the inclusion of exchange-corrections (RTFA- compared with
RTFA-EXI1 results) reduces the maximum value of & by roughly 9-12 %,
* while the lower m, (RTFA-EX1 compared with RTFA-EX2) causes an ad-
ditional decrease of Q.. of about the same magnitude. This latter effect is
consistent with the larger diffuseness of RTFA-EX2 densities we discussed
above.

Furthermore, ay,.; depends strongly on the mass number A. Within
the RTFA approximation we found ay,.; = 3.08 MeV for 60, but apmer =
1.19 MeV for ?°Pb. This is clear in view of the larger radial distances in-
volved for larger systems (see expression (4.2.2)) and means in turn that the
strength of the spin-orbit splitting decreases with increasing orbital angular
momentum. This trend agrees with experimental data (see Ref. [41]). Finally
we compare our results for ., in “°Ca with the experimental value of the
spin—-orbit splitting for the odd proton in 4'Sc: within RTFA-, RTFA-EX1
and RTFA-EX2 calculations we obtained a,,q., = 2.19,1.99 and 1.78 MeV,
respectively, while the experiment yields & = 1.80 MeV [10]. Hence, our
exchange corrected model is in rather close agreement with the empirical
data. '
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5 Concluding Remarks

In the present paper we have carried out relativistic Thomas—Fermi calcu-
lations including quantum corrections for a set of spherical nuclei. There
are two kinds of quantum corrections up to the second order in %, which we
incorporated perturbatively in our code, while the numbers of protons and
neutrons are held fixed. First the WK-corrections, which are supposed to
improve the expectation values of one body operators compared with pure
Thomas—Fermi calculations. In this case we used a linear o—w model which
reproduces the nuclear matter saturation point but yields a considerably too
large nuclear matter incompressibility. The latter point causes a surface
energy, which is too high within Thomas-Fermi calculations. Inclusion of
WXK-corrections significantly reduces the difference between the RTFA- and
experimental value of the surface energy coeflicient resulting in more realistic
binding energies. This improvement within the RTFA-WK approximation is
achieved by a better description of the nuclear surface through the consider-
ation of the spatial dependence of the meson— and the electromagnetic fields
and the possibility of a negative kinetic energy density in the surface region
which characterizes the physics of the classical forbidden region. The impact
of the WK-corrections decreases with increasing mass number.

The second kind of quantum corrections of the order 42 are exchange
corrections. Here we also considered m-meson and tensor g—nucleon contri-
butions. This shifts the nuclear matter incompressibility to more reasonable
values. In turn, we found the nuclear surface energy lowered by the ex-
change corrections by ~ 14%, which yields stronger bindings and smaller
charge r.m.s. radii compared with the RTFA approach. As a consequence,
the bulk values of the charge-, particle- and kinetic energy densities are
systematically higher within RTFA-EX calculations.

Within nuclear matter Hartree-Fock calculations, m, constitutes an ad-
justable parameter. We calculated a set of parameters with m, adjusted to
get the experimental charge r.m.s. radius of 0 and studied its influence
on properties of nuclear matter and finite nuclei. While m, affects nuclear
matter properties only slightly, it has significant influence on those of finite
systems. With the o-meson contribution representing almost the entire at-
tractive part of the nuclear potential, m, determines its range. Hence we
found that a lower m, yields larger r.m.s. radii, weaker bindings and lower
bulk values of the various densities. The larger r.m.s. radii go along with a
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more diffuse fall-off in the surface regions of the densities we investigated.
The impact of m, weakens with increasing mass number according to the
nuclear matter limit, where its influence is small. _

Finally we calculated the spin—orbit interaction. We found that its
strength decreases with both, the inclusion of exchange corrections and de-
creasing m,. In agreement with experimental data a strong dependence of
the spin-orbit splitting on the mass number can be observed, namely smaller
values with increasing A. The maximum value of the spin—orbit splitting we
found within RTFA-EX calculations for a proton in 4°Ca is in good agree-
ment with the experiment.

In summary, by including quantum corrections in the described approx-
imate manner, our approach constitutes a simple and transparent model to
study their impact on the properties of finite systems in a systematic way for
nontrivial Lagrangians along with a tractable numerical effort in comparison
with lengthy wavefunction calculations.

A Appendix

In this Appendix we give the explicit expressions for the second order WK-
corrections to the particle-, scalar—, energy— and kinetic energy densities of
each kind of nucleons feeling the action of a scalar- and a time-like potential,
s and X, respectively (see Ref. [16]):

PR = | (3= ah) (950)
_ (2xp +41n BFT}“—“-") ASo+
+ 2% (3-22)VZo - VM + (A.1)
+ piF (2— %) (VM) +
+ % (1-22) AM*],
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ps(r) =

eWK(T) =

TWK(T‘)

2417r2 [M (1+23) (920) +

M*Azo-i-

PF :
p% (2+2%) Vo - YM* + (A.2)
% (2 + :z%) (?M"‘)2 +

(2:vp —61n pFA_; SF) AM*]

24:lw2 [(a:p (2 - x%-) —2In %@.) (620)2 —

2pF (1 + xﬁn) AXo +
M*
PF

(:cp (1 - xF) In %EE) (ﬁM")2 — (A.3)

2M* (mF —In Z’EMiE_F_) A M*]

2— (1-2%) Vo - VM* +

(1 — é) Yo pWK('r‘) + ;\Egp K(r)

241,,-2 [((3 - (1 + 1’?«") %) Tp — (3 — x%v) -ﬁ% - 21n25%£) (620)2 +

2M (wp - (2 - (1-2}) Mﬁ) + 21n_——-pFA;fF) AT —

<QPA: (2+23) +2mF% (3-2) +611\3; (- )) V- VM* —

() 1o 22 e

M* PF + EF .
2M (op+ 25 (1-a3) - (3257 ) m 2L )AM]

(A4)
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with er given by (2.19) and the definitions:

pr(r) = (s = Do(r)’ — M(r), (A.5)

M*(r) = M —Zg(r) (A.6)
and er(r)
* a—— F T

In equation (A.3) A = 0 corresponds to a purely external potential, while
A =1 describes the case of a selfconsistent two particle interaction.

For the Lagrangian (2.1) the decomposition of s and ¥ is given in each
order of & by equations (3.1.1) — (3.1.3). The second order corrections to the
meson— and electromagnetic fields are determined by [17]:

(A —m2)"K(r) = —g, (p4%(r) + p8%(r)), (A.8)

(A-m2)™ () = —gu (%) + 22" (r), (A.9)

(A —m2) ™K(r) = —g, (pF*(r) — PV (), (A.10)

AAYE(r) = —cszK(r). (A.11)
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Table captions

table 1: Parameters and nuclear matter properties (energy per particle
E/A, Fermi momentum p%, incompressibility K and effective mass
M*/M at saturation) of the three forces considered in the text. Fixed
input parameters are: M = 939 MeV, m,, = 783 MeV, m, = 770 MeV,
m. = 138 MeV; g2 /47 = 0.55, f,/g, = 6.6 and f2/4m = 0.08.

C? = g? (M/m,-)2 ,1=0,w.

table 2: Total energies (in MeV) and charge r.m.s. radii (in fm) of €0,
40Ca, 9°Zr and 2%®Pb calculated with the different approaches studied
in this paper in comparison with the experimental values [6, 34-36].

table 3: Contributions of the WK-corrections to the kinetic (T72X /A) and
potential (E% /A) energies per nucleon of 0, *°Ca, *Zr and 2®*Pb
within the two approximations RTFA-WK and RTFA-QC1. Tj,/A
and E,,:/A denote the remaining contributions to the total kinetic and

potential energies per nucleon. All quantities are in MeV.

table 4: Analysis of the total energies of *0 and “°Ca within the different
approximations studied in this paper: T};, and E¢,,; denote the kinetic
and Coulomb energies, respectively. E,, E, and E, are the Thomas-
Fermi contributions to the potential energies coming from the exchange
of 0—, w— and p-mesons, respectively. Ef*, ¢ = o,w, o, 7,Coul denote
the corresponding exchange corrections (Fock terms), while EWX is
the total WK-correction to the energies. The sum of the terms in
each column gives the corresponding total energy listed in Table 2. All
quantities are in MeV. '

table 5: Same as Table 4 for ®°Zr and 2°Pb.
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Table 1

H1 HF1 HF?2

m, (MeV) 550 550 497
C? 357.740 288.106 289.474
C? 274.105 146.656 150.372

E/A (MeV) -1575 -15.75  -15.75
p% (fm1) 130  1.30 130
K (MeV) 545 394 403
M*/M 0.541  0.599  0.594
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Table 2

160 4OCa 90Zr 208Pb
E rc E rc E rc E rc
RTFA -80.85 2.68 | -260.28 3.42 | -645.98 4.27 | -1412.03 5.52
RTFA-WK -105.51 2.67 | -317.36 3.43 | -747.85 4.27 | -1589.56 5.55
RTFA-EX1 -100.48 2.65 | -315.05 3.36 | -771.80 4.19|-1671.97 5.40
RTFA-EX2  -79.87 2.75|-273.43 3.43|-703.01 4.24 | -1569.36 5.42
RTFA-QC1 -115.12 2.64 | -367.04 3.36 | -877.90 4.17 | -1841.26 5.38
RTFA-QC2 -85.82 2.73 | -308.08 3.43 |-780.44 4.22|-1711.61 5.40
Exp. -127.68 -342.00 3.48 | -783.90 4.27 | -1636.96 5.42

2.73
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Table 3

RTFA-WK 160 90Ca | %Zr | 2%¢Pb
Tiin/A 10.463 | 9.888 | 9.860 | 10.203
TWK A 3.624 | 3.072| 2.443| 1.446
E,.:/A -18.050 | -18.663 | -18.896 | -18.133
EXE[A -2.631 | -2.232| -1.716| -1.158
RTFA-QC1

Thin/A 11.656 | 11.189 | 10.984 | 11.214
TWE/A 1.930 | 1.537| 1.217| 0.814
E /A -19.291 | -20.500 | -20.802 | -19.990
EE[A -1.489 | -1.401| -1.153| -0.890
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Figure captions

figure 1: Charge density distribution for 60: Calculated folded values of
pe (Eq.(4.2.1)) within RTFA and RTFA-EX1 are compared with a 3-
parameter Fermi fit to the experimental data [34].

figure 2: Same as Fig.1 for %°Ca.

figure 3: Same as Fig.l for ®Zr. The experimental values are taken from

[35].

figure 4: Same as Fig.1 for 22Pb. The experimental values are taken from

[36].

figure 5: Baryon density for *0: Calculated point (unfolded) values of
pe (Eq.(2.17)) within the RTFA-, RTFA-EX1- and RTFA-EX2-

approaches.
figure 6: Same as Fig.5 for °Ca.

figure 7: Proton kinetic energy densities for all nuclei under consideration
obtained in the RTFA (solid lines), RTFA-EX1 (long—dashed) and
RTFA-EX2 (dot—dashed) approximations.

figure 8: RTFA contribution (solid line) and total (long-dashed) proton ki-
netic energy “density” of 2%Pb within the RTFA-WK approach.

figure 9: Radial distribution of the quantity a(r) X 10 for a proton in
all nuclei under consideration obtained in the RTFA (dotted lines),
RTFA-EX1 (long-dashed) and RTFA-EX2 (dot-dashed) approxima-
tions along with the difference of the scalar- and time-like components
(X5 — Xo) of the RTFA-proton-—selfenergy (solid lines).
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